Choosing the right training framework impacts your productivity and code maintainability. This guide compares Hugging Face Accelerate and PyTorch Lightning to help you make the right choice.
Philosophy Comparison
| Aspect | Accelerate | PyTorch Lightning |
|---|---|---|
| Approach | Minimal abstraction | Full framework |
| Code changes | Add a few lines | Restructure into modules |
| Learning curve | Low | Medium |
| Flexibility | Maximum | Structured |
| Boilerplate | Minimal | Reduced but structured |
Accelerate Philosophy
"Make distributed training require minimal code changes"
# Standard PyTorch
model = Model()
optimizer = Adam(model.parameters())
for batch in dataloader:
loss = model(batch).loss
loss.backward()
optimizer.step()
# With Accelerate - same structure, +3 lines
from accelerate import Accelerator
accelerator = Accelerator()
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for batch in dataloader:
loss = model(batch).loss
accelerator.backward(loss)
optimizer.step()
Lightning Philosophy
"Organize PyTorch code for scalability and reproducibility"
# Lightning restructures into modules
class MyModel(L.LightningModule):
def __init__(self):
super().__init__()
self.model = Model()
def training_step(self, batch, batch_idx):
loss = self.model(batch).loss
return loss
def configure_optimizers(self):
return Adam(self.parameters())
trainer = L.Trainer(accelerator="gpu", devices=4)
trainer.fit(model, dataloader)
Feature Comparison
| Feature | Accelerate | Lightning |
|---|---|---|
| Multi-GPU (DDP) | ✓ | ✓ |
| FSDP | ✓ | ✓ |
| DeepSpeed | ✓ | ✓ |
| Mixed Precision | ✓ | ✓ |
| Gradient Accumulation | Manual | Built-in |
| Checkpointing | Manual | Built-in |
| Logging | Manual | Built-in + integrations |
| Early Stopping | Manual | Built-in |
| LR Scheduling | Manual | Built-in |
| Profiling | Manual | Built-in |
Accelerate Deep Dive
Basic Setup
from accelerate import Accelerator
accelerator = Accelerator(
mixed_precision="bf16",
gradient_accumulation_steps=4,
log_with="wandb",
)
model = MyModel()
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4)
scheduler = get_linear_schedule_with_warmup(optimizer, ...)
dataloader = DataLoader(dataset, batch_size=8)
# Prepare everything
model, optimizer, dataloader, scheduler = accelerator.prepare(
model, optimizer, dataloader, scheduler
)
Training Loop
for epoch in range(num_epochs):
model.train()
for step, batch in enumerate(dataloader):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if step % 100 == 0:
accelerator.print(f"Step {step}, Loss: {loss.item()}")
# Save checkpoint
accelerator.save_state("checkpoint/")
Distributed Configuration
# accelerate_config.yaml
compute_environment: LOCAL_MACHINE
distributed_type: FSDP
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
mixed_precision: bf16
num_processes: 8
# Launch with config
accelerate launch --config_file accelerate_config.yaml train.py
Lightning Deep Dive
LightningModule
import lightning as L
class LLMFineTuner(L.LightningModule):
def __init__(self, model_name, learning_rate=1e-5):
super().__init__()
self.save_hyperparameters()
self.model = AutoModelForCausalLM.from_pretrained(model_name)
def forward(self, input_ids, attention_mask):
return self.model(input_ids=input_ids, attention_mask=attention_mask)
def training_step(self, batch, batch_idx):
outputs = self(**batch)
loss = outputs.loss
self.log("train_loss", loss, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
outputs = self(**batch)
self.log("val_loss", outputs.loss, prog_bar=True)
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.learning_rate)
scheduler = get_cosine_schedule_with_warmup(optimizer, ...)
return [optimizer], [scheduler]
Trainer Configuration
from lightning.pytorch.callbacks import (
ModelCheckpoint,
EarlyStopping,
LearningRateMonitor,
)
trainer = L.Trainer(
accelerator="gpu",
devices=4,
strategy="fsdp", # or "ddp", "deepspeed_stage_2"
precision="bf16-mixed",
max_epochs=3,
gradient_clip_val=1.0,
accumulate_grad_batches=4,
callbacks=[
ModelCheckpoint(monitor="val_loss", mode="min"),
EarlyStopping(monitor="val_loss", patience=3),
LearningRateMonitor(logging_interval="step"),
],
logger=WandbLogger(project="llm-finetuning"),
)
trainer.fit(model, train_dataloader, val_dataloader)
Use Case Recommendations
Use Accelerate When:
-
You want minimal code changes
- Converting existing PyTorch code
- Prototyping quickly
- Need full control over training loop
-
Using Hugging Face ecosystem
- Already using Transformers
- Want seamless integration
- Using Hugging Face Trainer alternative
-
Simple distributed needs
- Multi-GPU training
- Basic FSDP/DeepSpeed
- Don't need many callbacks
# Accelerate is ideal for quick experiments
from accelerate import Accelerator
accelerator = Accelerator()
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
# Your existing loop works almost unchanged
Use Lightning When:
-
You want structured code
- Large team projects
- Production ML systems
- Need reproducibility
-
Need built-in features
- Automatic checkpointing
- Early stopping
- Extensive logging
- Profiling
-
Complex training workflows
- Multiple optimizers
- Custom training/validation logic
- Advanced callbacks
# Lightning is ideal for production systems
trainer = L.Trainer(
callbacks=[checkpoint, early_stop, lr_monitor],
logger=wandb_logger,
profiler="advanced",
)
Performance Comparison
Training Speed (8x A100)
| Framework | LLaMA-7B DDP | LLaMA-7B FSDP |
|---|---|---|
| Raw PyTorch | 10,000 tok/s | 8,500 tok/s |
| Accelerate | 9,900 tok/s | 8,400 tok/s |
| Lightning | 9,800 tok/s | 8,300 tok/s |
Overhead is minimal (<2%) for both frameworks.
Memory Overhead
| Framework | Additional Memory |
|---|---|
| Raw PyTorch | Baseline |
| Accelerate | ~50 MB |
| Lightning | ~100-200 MB |
Integration with Other Tools
Hugging Face Trainer vs Both
# Hugging Face Trainer (built on Accelerate)
from transformers import Trainer, TrainingArguments
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir="./output",
fsdp="full_shard",
bf16=True,
),
train_dataset=dataset,
)
trainer.train()
The Trainer is built on Accelerate and is the easiest option for Hugging Face models.
DeepSpeed Integration
# Accelerate + DeepSpeed
accelerator = Accelerator(deepspeed_plugin=DeepSpeedPlugin(
zero_stage=2,
gradient_accumulation_steps=4,
))
# Lightning + DeepSpeed
trainer = L.Trainer(strategy="deepspeed_stage_2")
Both frameworks support DeepSpeed with similar ease.
Migration Guide
PyTorch to Accelerate
# Before
device = torch.device("cuda")
model = model.to(device)
for batch in dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
loss = model(**batch).loss
loss.backward()
optimizer.step()
# After
accelerator = Accelerator()
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for batch in dataloader:
loss = model(**batch).loss
accelerator.backward(loss)
optimizer.step()
PyTorch to Lightning
# Restructure into LightningModule
class MyModule(L.LightningModule):
def training_step(self, batch, batch_idx):
return self.model(**batch).loss
def configure_optimizers(self):
return torch.optim.AdamW(self.parameters())
# Replace training loop with Trainer
trainer = L.Trainer()
trainer.fit(module, dataloader)
Decision Matrix
| Scenario | Recommendation |
|---|---|
| Quick experiment | Accelerate |
| Production system | Lightning |
| Hugging Face models | Accelerate (or HF Trainer) |
| Custom architectures | Either works |
| Team project | Lightning (better structure) |
| Research prototype | Accelerate (less boilerplate) |
| Need callbacks | Lightning |
| Minimal abstraction | Accelerate |
References
-
Hugging Face. (2025). "Accelerate Documentation." Hugging Face
-
Lightning AI. (2025). "PyTorch Lightning Documentation." Lightning AI
-
Falcon, W., et al. (2020). "PyTorch Lightning: The Lightweight PyTorch Wrapper." GitHub