Back to all articles
Deep Learning

Hugging Face Accelerate vs PyTorch Lightning: Training Framework Showdown

Compare Hugging Face Accelerate and PyTorch Lightning for distributed training. Learn the differences in philosophy, features, and when to use each framework.

Flash Attention TeamJanuary 8, 20267 min read
AcceleratePyTorch Lightningtraining frameworkdistributed trainingMLOps

Choosing the right training framework impacts your productivity and code maintainability. This guide compares Hugging Face Accelerate and PyTorch Lightning to help you make the right choice.

Philosophy Comparison

AspectAcceleratePyTorch Lightning
ApproachMinimal abstractionFull framework
Code changesAdd a few linesRestructure into modules
Learning curveLowMedium
FlexibilityMaximumStructured
BoilerplateMinimalReduced but structured

Accelerate Philosophy

"Make distributed training require minimal code changes"

# Standard PyTorch
model = Model()
optimizer = Adam(model.parameters())

for batch in dataloader:
    loss = model(batch).loss
    loss.backward()
    optimizer.step()

# With Accelerate - same structure, +3 lines
from accelerate import Accelerator
accelerator = Accelerator()
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

for batch in dataloader:
    loss = model(batch).loss
    accelerator.backward(loss)
    optimizer.step()

Lightning Philosophy

"Organize PyTorch code for scalability and reproducibility"

# Lightning restructures into modules
class MyModel(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.model = Model()

    def training_step(self, batch, batch_idx):
        loss = self.model(batch).loss
        return loss

    def configure_optimizers(self):
        return Adam(self.parameters())

trainer = L.Trainer(accelerator="gpu", devices=4)
trainer.fit(model, dataloader)

Feature Comparison

FeatureAccelerateLightning
Multi-GPU (DDP)
FSDP
DeepSpeed
Mixed Precision
Gradient AccumulationManualBuilt-in
CheckpointingManualBuilt-in
LoggingManualBuilt-in + integrations
Early StoppingManualBuilt-in
LR SchedulingManualBuilt-in
ProfilingManualBuilt-in

Accelerate Deep Dive

Basic Setup

from accelerate import Accelerator

accelerator = Accelerator(
    mixed_precision="bf16",
    gradient_accumulation_steps=4,
    log_with="wandb",
)

model = MyModel()
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4)
scheduler = get_linear_schedule_with_warmup(optimizer, ...)
dataloader = DataLoader(dataset, batch_size=8)

# Prepare everything
model, optimizer, dataloader, scheduler = accelerator.prepare(
    model, optimizer, dataloader, scheduler
)

Training Loop

for epoch in range(num_epochs):
    model.train()
    for step, batch in enumerate(dataloader):
        with accelerator.accumulate(model):
            outputs = model(**batch)
            loss = outputs.loss
            accelerator.backward(loss)
            optimizer.step()
            scheduler.step()
            optimizer.zero_grad()

        if step % 100 == 0:
            accelerator.print(f"Step {step}, Loss: {loss.item()}")

    # Save checkpoint
    accelerator.save_state("checkpoint/")

Distributed Configuration

# accelerate_config.yaml
compute_environment: LOCAL_MACHINE
distributed_type: FSDP
fsdp_config:
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
mixed_precision: bf16
num_processes: 8
# Launch with config
accelerate launch --config_file accelerate_config.yaml train.py

Lightning Deep Dive

LightningModule

import lightning as L

class LLMFineTuner(L.LightningModule):
    def __init__(self, model_name, learning_rate=1e-5):
        super().__init__()
        self.save_hyperparameters()
        self.model = AutoModelForCausalLM.from_pretrained(model_name)

    def forward(self, input_ids, attention_mask):
        return self.model(input_ids=input_ids, attention_mask=attention_mask)

    def training_step(self, batch, batch_idx):
        outputs = self(**batch)
        loss = outputs.loss
        self.log("train_loss", loss, prog_bar=True)
        return loss

    def validation_step(self, batch, batch_idx):
        outputs = self(**batch)
        self.log("val_loss", outputs.loss, prog_bar=True)

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(self.parameters(), lr=self.hparams.learning_rate)
        scheduler = get_cosine_schedule_with_warmup(optimizer, ...)
        return [optimizer], [scheduler]

Trainer Configuration

from lightning.pytorch.callbacks import (
    ModelCheckpoint,
    EarlyStopping,
    LearningRateMonitor,
)

trainer = L.Trainer(
    accelerator="gpu",
    devices=4,
    strategy="fsdp",  # or "ddp", "deepspeed_stage_2"
    precision="bf16-mixed",
    max_epochs=3,
    gradient_clip_val=1.0,
    accumulate_grad_batches=4,
    callbacks=[
        ModelCheckpoint(monitor="val_loss", mode="min"),
        EarlyStopping(monitor="val_loss", patience=3),
        LearningRateMonitor(logging_interval="step"),
    ],
    logger=WandbLogger(project="llm-finetuning"),
)

trainer.fit(model, train_dataloader, val_dataloader)

Use Case Recommendations

Use Accelerate When:

  1. You want minimal code changes

    • Converting existing PyTorch code
    • Prototyping quickly
    • Need full control over training loop
  2. Using Hugging Face ecosystem

    • Already using Transformers
    • Want seamless integration
    • Using Hugging Face Trainer alternative
  3. Simple distributed needs

    • Multi-GPU training
    • Basic FSDP/DeepSpeed
    • Don't need many callbacks
# Accelerate is ideal for quick experiments
from accelerate import Accelerator

accelerator = Accelerator()
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
# Your existing loop works almost unchanged

Use Lightning When:

  1. You want structured code

    • Large team projects
    • Production ML systems
    • Need reproducibility
  2. Need built-in features

    • Automatic checkpointing
    • Early stopping
    • Extensive logging
    • Profiling
  3. Complex training workflows

    • Multiple optimizers
    • Custom training/validation logic
    • Advanced callbacks
# Lightning is ideal for production systems
trainer = L.Trainer(
    callbacks=[checkpoint, early_stop, lr_monitor],
    logger=wandb_logger,
    profiler="advanced",
)

Performance Comparison

Training Speed (8x A100)

FrameworkLLaMA-7B DDPLLaMA-7B FSDP
Raw PyTorch10,000 tok/s8,500 tok/s
Accelerate9,900 tok/s8,400 tok/s
Lightning9,800 tok/s8,300 tok/s

Overhead is minimal (<2%) for both frameworks.

Memory Overhead

FrameworkAdditional Memory
Raw PyTorchBaseline
Accelerate~50 MB
Lightning~100-200 MB

Integration with Other Tools

Hugging Face Trainer vs Both

# Hugging Face Trainer (built on Accelerate)
from transformers import Trainer, TrainingArguments

trainer = Trainer(
    model=model,
    args=TrainingArguments(
        output_dir="./output",
        fsdp="full_shard",
        bf16=True,
    ),
    train_dataset=dataset,
)
trainer.train()

The Trainer is built on Accelerate and is the easiest option for Hugging Face models.

DeepSpeed Integration

# Accelerate + DeepSpeed
accelerator = Accelerator(deepspeed_plugin=DeepSpeedPlugin(
    zero_stage=2,
    gradient_accumulation_steps=4,
))

# Lightning + DeepSpeed
trainer = L.Trainer(strategy="deepspeed_stage_2")

Both frameworks support DeepSpeed with similar ease.

Migration Guide

PyTorch to Accelerate

# Before
device = torch.device("cuda")
model = model.to(device)
for batch in dataloader:
    batch = {k: v.to(device) for k, v in batch.items()}
    loss = model(**batch).loss
    loss.backward()
    optimizer.step()

# After
accelerator = Accelerator()
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for batch in dataloader:
    loss = model(**batch).loss
    accelerator.backward(loss)
    optimizer.step()

PyTorch to Lightning

# Restructure into LightningModule
class MyModule(L.LightningModule):
    def training_step(self, batch, batch_idx):
        return self.model(**batch).loss

    def configure_optimizers(self):
        return torch.optim.AdamW(self.parameters())

# Replace training loop with Trainer
trainer = L.Trainer()
trainer.fit(module, dataloader)

Decision Matrix

ScenarioRecommendation
Quick experimentAccelerate
Production systemLightning
Hugging Face modelsAccelerate (or HF Trainer)
Custom architecturesEither works
Team projectLightning (better structure)
Research prototypeAccelerate (less boilerplate)
Need callbacksLightning
Minimal abstractionAccelerate

References

  1. Hugging Face. (2025). "Accelerate Documentation." Hugging Face

  2. Lightning AI. (2025). "PyTorch Lightning Documentation." Lightning AI

  3. Falcon, W., et al. (2020). "PyTorch Lightning: The Lightweight PyTorch Wrapper." GitHub

Frequently Asked Questions

Related Articles

Need Flash Attention wheels?

Skip the 30+ minute compilation. Find prebuilt wheels for your exact configuration.

Find Your Wheel